
CTIM Technical Report

ISSN 2254-2353

Augmented Reality in Sport Scenarios
Using Cameras Mounted on a Tripod

Miguel Alemán Flores, Luis Álvarez León,
Pedro Henŕıquez Castellano and Agust́ın

Trujillo Pino

No. 2

Las Palmas de Gran Canaria

13 September 2012

Augmented Reality in Sport Scenarios Using

Cameras Mounted on a Tripod

Miguel Alemán-Flores Luis Alvarez Pedro Henriquez
Agust́ın Trujillo

26/07/12

Abstract

In this paper we address the problem of inserting virtual content
in a video sequence. The method we propose uses just image informa-
tion. We perform primitive tracking, camera calibration, real and vir-
tual camera synchronisation and finally rendering to insert the virtual
content in the real video sequence. To simplify the calibration step we
assume that cameras are mounted on a tripod (which is a common sit-
uation in practise). The primitive tracking procedure, which uses lines
and circles as primitives, is performed by means of a CART (Classifi-
cation and Regression Tree). Finally, the virtual and real camera syn-
chronisation and rendering is performed using functions of OpenGL
(Open Graphic Library). We have applied the method proposed to
sport event scenarios, specifically, soccer matches. In order to illus-
trate its performance, it has been applied to real HD (High Definition)
video sequences. The quality of the proposed method is validated by
inserting virtual elements in such HD video sequence.

Keywords: Augmented Reality, Graphic Insertion, Camera Calibration

1 Introduction

The broadcasting of sport events increasingly introduces the processing of
video sequences for the insertion of virtual objects. On the one hand, these
objects can be for a better understanding of the scene such as country flags
in swimming, yellow down line in football, offside line in soccer and puck
path in hockey. At the other hand, them can be for adding advertisements in
different places during the event without disturbing the viewers. Most meth-
ods of virtual objects insertion in a video consist of two main stages, which
are camera calibration and virtual content insertion. Camera calibration
consists of several stages, which usually include initialisation, calibration
estimation, primitive tracking and calibration refining. Moreover, virtual
content insertion is divided in two steps, camera synchronisation and ren-
dering. In this paper, we analyse this problem in real application scenarios,

1

where we deal with some additional problems, such as the small number of
visible primitives which are usually visible and are needed for camera cal-
ibration, or the large size of HD videos. The main assumptions we make
are, firstly, that the video sequences have been acquired using a camera
mounted on a tripod (which is a common situation in practise) and fixed in
location it can freely rotate and change their intrinsic parameters by zoom-
ing. Secondly, that there exists a certain contrast between all primitives of
interest for calibration (lines and circles) and the background (grass). Usu-
ally, in sport event scenarios, primitives are well contrasted with respect to
the background (the green of the grass in the case of soccer matches).

In our implementation, there are several stages as is shown in Figure
1. Initialisation stage consists of two different process, camera calibration
initialisation and virtual objects configuration. Camera calibration initial-
isation is divided in three steps, which are only carried out on the first
frame: load of previously calculated information (geometrical parameters of
the tripod and training classes for the decision tree), primitive detection,
and camera calibration for the first frame. Primitive detection is performed
by means of a morphological method described in [7], whereas the camera
calibration technique is explained in this paper. In virtual object configu-
ration we have to define the objects appearance and their positions in the
soccer stadium. For the following frames, we directly start at the calibration
estimation and we consider the information obtained from the previous two
frames. We assume that the changes between consecutive frames are not too
large and, furthermore, as we are dealing with cameras placed on a tripod,
the movements of the camera are restricted. Afterwards, we continue the
process with the primitive tracking stage, which searches for the primitives
in the image using a decision tree and the projection of the reference prim-
itives. The latter are the lines and circles in a model of a soccer field with
actual dimensions, which are projected using the homography estimated
from the previous two frames. Finally, from the primitives detected and
the geometry of the tripod, we refine the calibration for the current frame.
When we have the camera calibrated in a frame, we can synchronise the real
camera with a virtual camera and project the virtual objects onto the real
image using OpenGL [2]. We use OpenGL because it provides functions to
manage easily virtual camera and virtual objects. For example changing the
viewpoint or the virtual camera position, adding textures and blending to
the virtual objects, etc.

This paper is structured as follows: In section 2, we summarise the
state of the art. Section 3 explains the geometry and calibration process
for cameras mounted on a tripod. In section 4, we introduce a method to
perform primitive tracking using a decision tree. In section 5, we describe
the camera synchronisation. Section 6 is the explanation of the rendering.
In section 7, we show some experiments and results. Finally, in section 8,
we present our main conclusions.

2

Figure 1: Stages in our implementation for inserting virtual content in a
video sequence.

2 Related works

Different approaches have been presented to tackle the problem of insert
virtual content or advertisements in sport event videos. To achieve incor-
porate virtual graphics in a video, we have to calibrate the camera to get
the camera parameters and be able to synchronise the real camera with the
virtual camera. To perform a video camera calibration, the most common
strategy consists of certain tasks which are applied on each video frame:
feature extraction (e.g. primitives and background), camera calibration es-
timation (based on the previous frames), primitive tracking, improvement
of camera calibration estimation. See for instance [3, 4, 5, 6, 9]. In our
case, we deal with cameras mounted on a tripod, and therefore, we have to
take into account the changes in the camera model, as explained in [8, 15].
With the calibration done, we can start the graphic insertion, which can
be divided in two steps: camera synchronisation and rendering. Different
techniques and libraries are used to perform these stages. For example in
[10, 11] they project the virtual content with the projection matrix obtained
in the camera calibration step, and paint the projected content pixel by pixel
in the real image. To give a more realistic appearance mixing the virtual
and real image, a blending technique is used in [13]. On the other hand,
graphic libraries are used to improve the procedure efficiency as in [12]. A
common issue in all the related works is the image segmentation for detect
pixels which can be replaced, e.g. grass, and which not, e.g. players.

3

3 Geometry and calibration of cameras mounted
on a tripod

A tripod is defined by a centre of rotation X̄0 = (X0, Y0, Z0)
T and two uni-

tary rotation axes ē0 =
(
ē0x, ē

0
y, ē

0
z

)T
, ē1 =

(
ē1x, ē

1
y, ē

1
z

)T
. We call R

(
ēk, θk

)
the matrix to rotate by an angle of θk about axis ēk. In order to rotate a 3D
point X̄ about axis ēk using the centre of rotation X̄0, the transformation
turns into the following equation:

X̄ (θk) = X̄0 +R
(
ēk, θk

) (
X̄ − X̄0

)
(1)

The general motion of a tripod is the composition for two rotations of
the above type. We assume that the centre of rotation X̄0 is the same for
both axes, which is equivalent to assume that the two axes about which
the tripod rotates intersect at a point. This is a common situation and
the points are then transformed according to the general equation for the
motion of a tripod:

X̄ (θ0, θ1) = X̄0 +R
(
ē0, θ0

)
R
(
ē1, θ1

) (
X̄ − X̄0

)
(2)

From now on, we use the following notation :

R (θ0, θ1) ≡ R
(
ē0, θ0

)
R
(
ē1, θ1

)
(3)

t̄ (θ0, θ1) = X̄0 −R (θ0, θ1) X̄0 (4)

Therefore, Equation 2 can be written in the form:

X̄ (θ0, θ1) = R (θ0, θ1) X̄ + t̄ (θ0, θ1) (5)

The general equation for the projection of a 3D point X̄ = (X,Y, Z)T

onto the image plane is as follows:

s

 x
y
1

 = A (f0)R0

⌊
Id,−c̄0

⌋
X
Y
Z
1

 (6)

where

A (f0) =

 f0 0 xc
0 rf0 yc
0 0 1

 (7)

R0 =

 r000 r001 r002
r010 r011 r012
r020 r021 r022

 (8)

4

[
Id,−c̄0

]
=

 1 0 0 −c̄0x
0 1 0 −c̄0y
0 0 1 −c̄0z

 (9)

In Equation 6, we assume that the possible lens distortion has previously
been corrected. The matrix P0 ≡ A (f0)R0

⌊
Id,−c̄0

⌋
is called projection

matrix. For each frame, the values of (fn, θ
n
0 , θ

n
1) determine the projection

matrix as follows:

P (fn, θ
n
0 , θ

n
1) ≡ A (f0)R0

[
Id,−c̄0

](R (θn0 , θ
n
1) t̄ (θn0 , θ

n
1)

0 1

)
(10)

Therefore, considering the following expression:

Pn (fn, θ
n
0 , θ

n
1) ≡ A (fn)R0R (θn0 , θ

n
1)
⌊
Id,RT (θn0 , θ

n
1)
(
t̄ (θn0 , θ

n
1) − c̄0

)⌋
(11)

we can deduce that the rotation and focus of the camera after the motion
are:

Rn ≡ R0R (θn0 , θ
n
1) (12)

c̄n = −RT (θn0 , θ
n
1)
(
t̄ (θn0 , θ

n
1) − c̄0

)
(13)

We have to take into account that any view acquired with the tripod
can be considered as a reference to move it, and when we change the initial
reference camera, we are also modifying the rotation axes of the tripod.

In practise, in order to estimate the geometry of the tripod, we previ-
ously calibrate some isolated frames from the video sequence using standard
calibration techniques, and then we estimate the geometry of the tripod
using a standard bundle adjustment technique.

4 Primitive tracking by means of a decision tree

At the primitive tracking stage, we use a calibration estimation and a CART
decision tree. For the calibration estimation at frame n, we use the param-
eters (f, θ0, θ1) from frames n− 1 and n− 2, as explained above. A CART
decision tree, as those described in [1], is used to detect the white primitives.
To build the decision tree is necessary a learning stage based on a training
set with information about different classes. For each video sequence, we
read a classification data set, which contains information about two classes,
primitives and background. Usually, in our soccer field scenarios, primitives
are white and the background is green. In the data set, we have RGB values
obtained from a manual segmentation of the first frame of the sequence. For
the rest of the frames we perform the primitive tracking that is completely

5

explained in [14]. After the tracking stage, we proceed to the improvement
of the calibration estimation.

5 Camera synchronisation

We use OpenGL to create a 3D virtual world which will be mixed with the
real world image. To be able to insert objects in the real image with the same
perspective, we need to synchronise the virtual camera with the real camera.
That is mean, we have to place the virtual camera at the same position of
real camera and with the same rotation and zoom. The synchronisation is
done by calculating virtual camera parameters from real camera parameters.
The parameters which define a real camera are rotation, translation and
clip plane, as we can see in Figure 2. The clip plane is defined by the
focus, the centre and the intrinsic parameters of the camera. To perform
the camera synchronisation, we have to configure the virtual camera with
the real camera parameters. OpenGL has functions that implements this
process, but needs some inputs which we have to calculate. These inputs are:
camera centre, projection centre and a vector indicating the camera vertical
axis direction (VUP). Moreover, we need to define the viewing volume. The
viewing volume determines how a 3D object is projected onto a 2D image.
For a perspective projection, the viewing volume is a frustum. Determining
the frustum in OpenGL needs distances from projection centre to clipping
planes (left,right,top,bottom) and distances from the camera to the near and
far depth clipping planes, as shown in Figure 3.

Figure 2: Real camera. Where Rn is rotation, t̄n is translation and C is
image centre, the centre components are xc and yc from intrinsic parameters
shown in expression 7

We use the euclidean camera calibration performed in the previous stage
to obtain all the requested parameters. Firstly, we get the inverse projection
matrix from the euclidean camera, being the projection matrix as is showed
in 11. The inverse projection matrix is obtained as follows:

P−1 ≡ RT
0A

−1 (f0)
⌊
Id, c̄0

⌋
(14)

Now, we can calculate the principal point multiplying this matrix by the
image centre, Cv = P−1C, which belongs to the intrinsic parameters in

6

Figure 3: Virtual camera. Where VUP is the vector that indicates the
camera vertical axis. width and height are the real image width and height.
Cv is the principal point. The points top,left,right and bottom are the known
points to define the clipping planes.

the euclidean camera. Secondly, we have to define the frustum clipping
planes as is shown in Figure 3. To calculate them, we obtain the distances
from principal point to the sides of the near clip plane. We know that the
dimensions of the near clip plane are the real images dimensions. Firstly, we
obtain four points, one for each clipping plane. These points are top,right,left
and bottom, as we can see in Figure 3. They are defined using the near
clipping plane dimensions and coordinates of the image centre C = (xc, yc),
where xc and yc are extracted from the intrinsic parameters, expression 7.
Then, they are multiplied by the inverse projection matrix:

top = P−1 (xc, height− 1, 1, 1)T (15)

bottom = P−1 (xc, 0, 1, 1)T (16)

right = P−1 (width− 1, yc, 1, 1)T (17)

left = P−1 (0, yc, 1, 1)T (18)

Now we have to calculate the distances between the principal point and
the points previously calculated to pass them to OpenGL as parameters to
define the frustum.

Finally, we obtain the VUP projecting the vector from principal point
to up side of the near clip plane:

V UP = P−1 (xc, 0, 1, 1)T − (2C − Cv) (19)

As a result of the synchronisation, the virtual camera is able to obtain
images with the same perspective of the real camera as we can see in Figure
4, which shows a virtual camera synchronised with a real camera.

7

Figure 4: Virtual camera synchronised. The real image is in the near clip
frame, where the virtual objects are rendered.

6 Rendering

In the initialisation stage, we have configured in the virtual world different
polygons placed on the grass and 3D objects using OpenGL. To perform
a correct rendering, we have taken into account the lens distortion model.
Applying an inverse distortion model to polygon points we distort the poly-
gons which will fit better with real distorted image. When the cameras have
been synchronised, we can render the resulting frame adding the virtual
content to the real image. For example, if in Figure 4 we add objects in
the central circle, with OpenGL we can project them onto the real image.
But first, a segmentation of the real image must be done. This segmenta-
tion allows differentiate the grass from the players and the lines. That is
useful for the virtual ads which are painted on the grass. We only replace
the pixels belonging the grass avoiding the occlusion of the players or lines.
The segmentation is done converting image to HSV space. We calculate the
H histogram and get the maximum value. It will be the green of the grass
because in our scenario, it is the dominant colour. But it is normal finding
different tones of green in the grass, to deal with that, we use thresholds to
select an interval of H values that belongs to the grass. The mask obtained
is stored in the alpha channel of the original image, this channel is used
by OpenGL to know which pixel is transparent. Then we paint the original
image as background of our virtual world, and OpenGL replaces transparent
pixels with pixels from the virtual world.

7 Numerical experiments and results

We have tested our method on different video sequences using both, scale
models and real scenes from soccer matches. The sequences acquired using
the scale model consist of 1440 x 809 frames. Real soccer sequences are
1920 x 1080 high definition video sequences. Before applying the initiali-
sation stage to the sequence, we have to obtain certain information, such

8

as the learning data set for the decision tree and the tripod calibration.
The learning data set is manually obtained by segmenting the first frame
of the sequence, with only two different classes: primitives (white lines and
circles) and grass. An example of manual segmentation is shown in Figure
5. Tripod geometry calibration is calculated with some frames extracted at
different instants of the sequence. We can see the results for these frames
in Figure 6. With this information, we perform the initialisation stage and
calibrate the whole sequence. The calibration we have obtained is used for
the insertion of graphics into the video. The results are shown in Figures
7, 8, 9, 10 and in videos provided as supplementary material (the videos
are also in http://www.ctim.es/demo104/). Since we deal with cameras
mounted on a tripod, the restrictions of the geometry of the tripod strongly
simplify the problem of camera calibration and allow recovering an accurate
frame calibration in cases where standard calibration methods fail.

Figure 5: Two different classes are used in the manual segmentation: white
primitives and grass. Grass is segmented using polygons, whereas segments
are used for primitives.

Figure 6: Tripod geometry calibration for three reference frames. To validate
the results, soccer field primitives are projected onto the real images using
different colours

8 Conclusions

In this paper we study the augmented reality in sport scenarios using cam-
eras mounted on a tripod, in these scenarios there are usually a small number
of visible primitives which can be considered to perform the calibration. To
solve this problem, we firstly assume that the camera is mounted on a tri-
pod (which is a common situation in practise) and we study the geometry

9

of the tripod from a mathematical point of view. This assumption strongly
simplifies the calibration problem and allows recovering the frame calibra-
tion in situations where general calibration techniques fail. Secondly, we
use a simple method for primitive tracking based on a CART (Classification
and Regression Tree). This method is used in the calibration procedure and
takes into account colour information. Besides, for camera synchronisation
we made a correspondence between real camera and virtual camera, calcu-
lating virtual camera parameters from real camera parameters. Finally, we
render using OpenGL because it offers easy management of virtual camera
and optimised graphic processing at graphic card.

We present some experiments using HD videos of sport events (soccer
matches) in both, scale models and real scenarios. In order to validate our
approach, we insert some graphics into the video sequences. The numerical
results we present are precise and very promising.

Figure 7: Graphic insertion with camera calibration using tripod geometry
and primitive tracking. Extracted from the videos provided as supplemen-
tary material (http://www.ctim.es/demo104/).

Figure 8: Graphic insertion with camera calibration using tripod geometry
and primitive tracking. Extracted from the videos provided as supplemen-
tary material (http://www.ctim.es/demo104/).

Acknowledgement

This research has partially been supported by the MICINN project reference
MTM2010-17615 (Ministerio de Ciencia e Innovación. Spain). We acknowl-
edge MEDIAPRODUCCION S.L. for providing us with the real HD video

10

Figure 9: Graphic insertion with camera calibration using tripod geometry
and primitive tracking. Extracted from the videos provided as supplemen-
tary material (http://www.ctim.es/demo104/).

Figure 10: Graphic insertion with camera calibration using tripod geometry
and primitive tracking. Extracted from the videos provided as supplemen-
tary material (http://www.ctim.es/demo104/).

we use in the numerical experiments.

References

[1] L. Breiman, JH. Friedman, RA. Olshen, CJ. Stone: Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.

[2] D.Shreiner, M. Woo, J. Neider, T. Davis: OpenGL Programming
Guide. 2007.

[3] JB. Hayet, J. Piater: On-Line Rectification of Sport Sequences with
Moving Cameras. In: MICAI 2007: Advances in Artificial Intelligence,
volume 4827, pages 736-746, 2007.

[4] H. Kim, KS. Hong: Robust Image Mosaicing of Soccer Videos using
Self-Calibration and Line Tracking. In: Pattern analysis and applica-
tions, volume 4, pages 9-19, 2001.

[5] D. Farin, S. Krabbe, PHN. de With, W. Effelsberg: Robust camera cal-
ibration for sport videos using court models. In: Storage and Retrieval
Methods and Applications for Multimedia, volume 5307, pages 80-91,
2004.

11

[6] D. Farin, J.G. Han, PHN. de With: Fast camera calibration for the
analysis of sport sequences. In: IEEE International Conference on Mul-
timedia and Expo (ICME), volume 1-2, pages 482-485, 2005.

[7] M. Aleman-Flores, L. Alvarez, P. Henriquez, L. Mazorra: Morpholog-
ical Thick Line Center Detection. In: 7th International Conference on
Image Analysis and Recognition, volume 6111, pages 71-80, 2010.

[8] E. Hayman, D. Murray: The effects of translational misalignment when
self-calibration rotating and zooming cameras. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence, volume 25, pages 1015-
1020, 2003.

[9] Q. Li, Y. Luo: Automatic camera calibration for images of soccer
match. In: Proceedings of World Academy of Science, Engineering and
Technology, volume 1, pages 170-173, 2005.

[10] J Han, D. Farin, P.H.N. de With: A mixed-reality system for broad-
casting sports video to mobile devices. In: IEEE Multimedia, volume
18, pages 72-84, 2011.

[11] S. Li, B. Lu: Automatic camera calibration technique and its applica-
tion in virtual advertisement insertion system. In: 2nd IEEE Confer-
ence on Industrial Electronics and Applications. ICIEA 2007, volume
1, pages 288-292, 2007.

[12] K. Wan, X. Yan: Advertising insertion in sports webcasts. In: IEEE
Multimedia, volume 14, pages 78-82, 2007.

[13] C. Chang, K. Hsieh, M. Chiang, J. Wu: Virtual spotlighted advertis-
ing for tennis videos. In: Journal of visual communication and image
representation, volume 21, pages 595-612, 2010.

[14] L. Alvarez, P. Henriquez, J. Sanchez: CART application to image prim-
itives tracking. In: Conferencia de la Asociacion Espaola para la In-
teligencia Artificial (CAEPIA), 2011.

[15] J. Knight, A. Zisserman, I. Reid: Linear auto-calibration for ground
plane motion. In: 2003 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 1, pages 503-510, 2003.

12

Centro de Tecnoloǵıas de la Imagen

Universidad de Las Palmas de Gran Canaria

http://www.ctim.es

1

